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Abstract This paper concerns the study of the so-called super minimizers related to the
concept of super efficiency in constrained problems of multiobjective optimization, where
cost mappings are generally set-valued. We derive necessary conditions for super minimi-
zers on the base of advanced tools of variational analysis and generalized differentiation
that are new in both finite-dimensional and infinite-dimensional settings for problems with
single-valued and set-valued objectives.
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1 Introduction

This paper is devoted to constrained problems of multiobjective optimization given by:

minimize F(x) subject to x ∈ � ⊂ X, (1.1)

where the cost mapping F : X →→ Z between Banach spaces is generally set-valued, and
where “minimization” is understood with respect to some partial ordering on Z . In this
setting, (1.1) is a problem of constrained set-valued optimization, while the term “vector
optimization” is conventionally used when F = f : X → Z is a single-valued mapping.
Therefore, we utilize the name of “multiobjective optimization” to unify both classes of
set-valued and vector optimization problems under consideration.
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Let Z be a partially ordered Banach space, where the partial order is generated by a
nonempty cone � �= ∅, which we always assume to be closed and convex while not generally
pointed, although for some results obtained in this paper the important pointedness property
is required. Denoting the ordering relation on Z by “≤”, we have:

z1 ≤ z2 if and only if z2 − z1 ∈ �. (1.2)

Given a nonempty subset � ⊂ Z and a point z̄ ∈ �, we recall the classical notion of vector
optimality: z̄ ∈ � is a minimal point of �, known also as a Pareto optimal point or as an
efficient point of �, if

� ∩ (z̄ − �) = {z̄} or, equivalently, (� − z̄) ∩ (−�) = {0}. (1.3)

Considering now the multiobjective optimization problem (1.1) defined via a set-valued
mapping F : X →→ Z with the graph

gph F := {
(x, z) ∈ X × Z

∣
∣ z ∈ F(x)

}
,

we say as usual that (x̄, z̄) ∈ gph F is a local minimizer to (1.1) if x̄ ∈ � and there is a
neighborhood U of x̄ such that z̄ is a minimal point of the image set

� = F(� ∩ U ) :=
⋃

x∈�∩U

F(x),

which means by definition (1.3) that

F(� ∩ U ) ∩ (x̄ − �) = {z̄}. (1.4)

If U = Z in (1.4), then the point (x̄, z̄) is called a minimizer to problem (1.1).
There are various modifications of the above efficiency notion intensively studied in the

literature; see, e.g., the books [4,10,13,15,17] with the references and discussions therein. A
lot of attention has been paid to the weak counterpart of definition (1.4) related to the usage
of certain scalarization techniques involving eventually applications of convex separation
theorems and their variants; see [10,13,15] for more details. On the other hand, it has been
well recognized that the weak efficiency/weak Pareto optimality and associated scalarization
techniques lead to serious limitations from the viewpoints of adequate descriptions of vector
optimization problems and practical applications. To eliminate some of these disadvantages,
the notion of proper efficiency was introduced by Geoffrion [9] following the pioneering
work by Kuhn and Tucker [14]; see also the subsequent papers by Borwein [6] and Benson
[5] for significant improvements of proper efficiency.

In this paper we pay the main attention to the notion of super efficiency introduced by
Borwein and Zhuang [8] and then studied in many publications; see, e.g., [8,11,12,21]
and the references therein. This notion refines and/or unifies various modifications of proper
efficiency and reflects crucial features of solutions to vector optimization problems important
from the viewpoints of both the theory and applications. We refer the reader to [8] for
various characterizations of super efficiency and its relationships with other solution notions
in multiobjective optimizations and economics.

The primary goal of this paper is to derive verifiable necessary conditions for super effi-
ciency using modern variational principles and variational techniques together with advan-
ced constructions of generalized differentiation. Our approach is mainly based on the extremal
principle of variational analysis, which can be viewed as a variational counterpart of the local
separation principle in nonconvex settings; see the books [16,17] for all the details on the
extremal principle and its numerous applications to various problems of scalar and vector
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optimization, economics, control theory, etc. We also refer the reader to more recent papers
[1–3], where the extremal principle and the corresponding results of the well-developed
generalized differential calculus generated by the extremal principle are applied to deriving
the existence theorems and necessary optimality/suboptimality conditions for efficient and
weakly efficient solutions to multiobjective problems with general and structural constraints.
In particular, it is proved in [3] that the condition

0 ∈ ∂ F(x̄, z̄) + N (x̄;�) (1.5)

is necessary for local efficient points/minimizers to problem (1.1), and it is also necessary
for weak local minimizers to (1.1) provided that int � �= ∅. To formulate (1.5), we use the
appropriate notions of generalized normals to sets and subgradients of set-valued mappings
defined and discussed below in Sect. 2. In this paper we use these and related generalized
differential constructions to obtain new necessary optimality conditions for super minimizers
to the general constrained multiobjective problem (1.1) and its specifications.

The rest of the paper is organized as follows. In Sect. 2 we present and briefly discuss
some major tools of variational analysis and generalized differentiation widely used in for-
mulating and proving the main results. Section 3 is devoted to deriving qualified necessary
optimality conditions for super minimizers to (1.1) under general assumptions on the initial
data expressed in terms of coderivatives of the cost mapping F . We also present in this
section new necessary conditions for super minimal points of sets. In Sect. 4 we establish
relationships between coderivatives and subdifferentials of set-valued mappings, which are
certainly of independent interest, and then derive subdifferential conditions for super mini-
mizers to multiobjective problems. The subdifferential conditions are generally independent
of the coderivative ones from Sect. 3 and require additional assumptions on the initial data,
while on the other hand they improve the latter in many important settings. The major results
obtained in both Sects. 3 and 4 are illustrated by examples and are compared with those
known in the literature.

Throughout the paper we use standard notation of variational analysis; cf. [16,20]. Recall
that IN := {1, 2, . . .} and that IB and IB∗ stand, respectively, for the closed unit balls in the
Banach space in question and its topological dual. Given a set-valued mapping F : X →→ X∗
between a Banach X and its dual X∗, the symbol

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗
∣
∣
∣ ∃ sequences xk → x̄ and x∗

k
w∗→ x∗

with x∗
k ∈ F(xk) for all k ∈ IN

}
(1.6)

signifies the sequential Painlevé-Kuratowski upper/outer limit of F at x̄ in the norm topology
of X and weak∗ topology w∗ of X∗.

2 Basic tools of variational analysis

In this section we briefly overview some basic generalized differential constructions and
related notions of variational analysis widely used in formulations and proofs of our main
results of the paper. We follow the recent books by Mordukhovich [16,17], where the reader
can find more details, discussions and references. We also refer the reader to the now classical
book by Rockafellar and Wets [20] in finite dimensions and to the recent book by Borwein and
Zhu [7] in Fréchet smooth spaces for related and additional material on variational analysis,
generalized differentiation, and their applications.
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Let � ⊂ X be a subset of a Banach space, and let x̄ ∈ �. The (basic, limiting,
Mordukhovich) normal cone to � at x̄ is defined by

N (x̄;�) := Lim sup
x→x̄
ε ↓ 0

N̂ε(x;�) (2.1)

via the sequential Painlevé–Kuratowski outer limit (1.6) of the sets of ε-normals

N̂ε(x;�) :=
⎧
⎨

⎩
x∗ ∈ X∗ ∣

∣ lim sup

u
�−→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

⎫
⎬

⎭
, x ∈ �, (2.2)

where u
�−→ x means that u → x with u ∈ �, and where N̂ε(x;�) := ∅ whenever x �∈ �

and ε ≥ 0. When ε = 0, the construction (2.2) is known as the Fréchet/regular normal cone
to � at x . Furthermore, we can equivalently put ε = 0 in (2.1) if the space X is Asplund
while the set � is locally closed around x .

Recall that a Banach space X is Asplund if any convex continuous function is densely
Fréchet differentiable on X . This class is sufficiently broad including, in particular, all
reflexive Banach spaces and Banach spaces with separable duals. There are many equi-
valent descriptions of Asplund spaces that can be found, e.g., in [7,16] and the references
therein.

In contrast to the sets of ε-normals (2.2), the normal cone (2.1) is nonconvex in common
finite-dimensional and infinite-dimensional situations enjoying nevertheless full calculus in
Asplund spaces and partly in the general Banach space setting; see [16] for a comprehensive
study based on the extremal principle and related tools of variational analysis.

Given a set-valued mapping F : X →→ Z between Banach spaces, consider two coderiva-
tives of F at the point (x̄, z̄) ∈ gph F : the normal coderivative

D∗
N F(x̄, z̄)(z∗) := {

x∗ ∈ X∗∣∣ (x∗,−z∗) ∈ N ((x̄, z̄); gph F)
}

(2.3)

and the mixed coderivative of F at (x̄, z̄) defined by

D∗
M F(x̄, z̄)(z∗) :=

{
x∗ ∈ X∗

∣
∣
∣ ∃ εk ↓ 0, (xk, zk)

gph F→ (x̄, z̄), x∗
k

w∗→ x∗, z∗
k → z∗

with (x∗
k ,−z∗

k ) ∈ N̂εk ((xk, zk); gph F) , k ∈ IN
}
, (2.4)

where one can equivalently put εk = 0 if both spaces X and Z are Asplund and if the
graph of F is locally closed around (x̄, z̄). We always omit z̄ in these coderivative notation
if F = f : X → Z is single-valued. It easily follows from (2.1), (2.3), and (2.4) above that

D∗
M F(x̄, z̄)(z∗) ⊂ D∗

N F(x̄, z̄)(z∗) for all z∗ ∈ Z∗,

where equality holds and we use the common symbol D∗F(x̄, ȳ) for both coderivatives when,
in particular, dim Z < ∞. Moreover, we have

D∗
N f (x̄)(z∗) = D∗

M f (x̄)(z∗) = {∇ f (x̄)∗z∗} for all z∗ ∈ Z∗

if f : X → Z is strictly differentiable at x̄ with the derivative ∇ f (x̄), i.e.,

lim
x,u→x̄

f (x) − f (u) − 〈∇ f (x̄), x − u〉
‖x − u‖ = 0,

which is automatic when f ∈ C1 around this point.
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Let us now consider the case of a mapping F : X →→ Z between Banach spaces with the
range space Z partially ordered via (1.2) by a closed and convex cone � ⊂ Z . Define the
epigraph of F with respect to the ordering cone � by

epi F := {
(x, z) ∈ X × Z

∣
∣ z ∈ F(x) + �

}

and the associated epigraphical multifunction E F : X →→ Z by

EF (x) := {
z ∈ Z

∣
∣ z ∈ F(x) + �

}
. (2.5)

Given (x̄, z̄) ∈ epi F , we define the basic/normal subdifferential of F at the point (x̄, z̄) in
the direction z∗ ∈ Z∗ by

∂ F(x̄, z̄)(z∗) := D∗
N EF (x̄, z̄)(z∗). (2.6)

This construction relates to the normal subdifferential of F at (x̄, z̄) introduced in [2] by

∂ F(x̄, z̄) := {
x∗ ∈ X∗∣∣ x∗ ∈ D∗

N EF (x̄, z̄)(z∗), −z∗ ∈ N (0;�), ‖z∗‖ = 1
}
. (2.7)

If ϕ : X → IR := (−∞,∞] is an extended-real-valued function finite at x̄ with z̄ =
ϕ(x̄), the subdifferential construction (2.7) with � = IR+ reduces to the basic/limiting
subdifferential by Mordukhovich; see [16] and the references therein. In Sect. 4 we establish
new relationships between the subdifferentials of set-valued mappings F with values in
partially ordered spaces and coderivatives of such mappings versus coderivatives of the
associated epigraphical multifunctions.

In what follows we also need the singular subdifferential of F at (x̄, z̄) defined by

∂∞F(x̄, z̄) := D∗
MEF (x̄, z̄)(0), (2.8)

which brings nontrivial information only for mappings that do not exhibit a certain Lipschit-
zian behavior. Namely, we have

∂∞F(x̄, z̄) = {0} (2.9)

if F is epi-Lipschitz-like (ELL) around (x̄, z̄) ∈ epi F in the sense that there are neighborhoods
U of x̄ and V of z̄ and a number � ≥ 0 such that

EF (x) ∩ V ⊂ EF (u) + �‖x − u‖ whenever x, u ∈ U. (2.10)

One of the most important ingredients of variational analysis in infinite dimensions is the
necessity to impose some “normal compactness” properties, which are automatic in finite
dimensions while compensate the lack of compactness in infinite-dimensional spaces. Let us
recall some of such properties, which are needed in this paper; see [16,17] for a comprehensive
theory (including well-developed calculus/preservation rules) and applications mainly based
on the extremal principle.

Given a set-valued mapping F : X →→ Y between Banach spaces, we say that F is
sequentially normally compact (SNC) at (x̄, z̄) ∈ gph F if for any sequences of elements
(εk, xk, zk, x∗

k , z∗
k ) ∈ IR × X × Z × X∗ × Z∗ satisfying

εk ↓ 0, (xk, zk)
�→ (x̄, z̄), and (x∗

k , z∗
k ) ∈ N̂εk ((xk, zk); gph F) , k ∈ IN , (2.11)

one has the implication

(x∗
k , z∗

k )
w∗→ (0, 0) �⇒ ‖(x∗

k , z∗
k )‖ → 0 as k → ∞,
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while εk can be equivalently omitted in (2.11) if X and Z are Asplund spaces and if the graph
of F is locally closed around (x̄, z̄).

A set � ⊂ Z is SNC at z̄ ∈ � if the constant mapping F ≡ � has this property at (z̄, z̄).
In [16], the reader can find a number of sufficient conditions ensuring the fulfillment of the
SNC property of sets and mappings (in particular, the so-called “compactly epi-Lipschitzian
property” in the sense of Borwein and Strójwas.). In the case of mappings, the following partial
modification of the SNC property happens to be more appropriate for many applications
including those in this paper: F : X →→ Z is partially SNC (PSNC) at (x̄, z̄) ∈ gph F if for
any sequences satisfying (2.11) we have the implication

[
x∗

k
w∗→ 0, ‖z∗

k‖ → 0

]
�⇒ ‖x∗

k ‖ → 0 as k → ∞.

In particular, the latter property is automatic if F is Lipschitz-like (or “pseudo-Lipschitz”
in the sense of Aubin) around (x̄, z̄), which is defined as in (2.10) with the replacement of
EF by F and seems to be the most natural extension of Lipschitzian behavior to set-valued
mappings; see [16,20] for more details and discussions.

Considering next a mapping F : X →→ Z whose range space is partially ordered by the
ordering cone � ⊂ Z , we use in what follow an appropriate modification of the PSNC
property. The mapping F is said to be partially sequentially normally epi-compact (partially
SNEC) at (x̄, z̄) ∈ epi F if the epigraphical multifunction EF is PSNC at this point. The latter
holds for any mapping F that is ELL around (x̄, z̄).

3 Coderivative conditions for super minimizers in multiobjective problems

This section is devoted to establishing general qualified necessary optimality conditions for
super minimizers to the constrained multiobjective optimization problem (1.1) in terms of
the normal and mixed coderivatives of the set-valued or single-valued cost mapping F and
the limiting normals to the constraint set � defined in Sect. 2.

First we recall the notion of super minimal points to arbitrary subsets of partially ordered
spaces introduced by Borwein and Zhuang [8]. Given a subset � of a Banach space Z ordered
via (1.2) by a closed and convex cone � ⊂ Z , we say that z̄ ∈ � is a super minimal point of
� if there is a number M > 0 such that

cl [cone (� − z̄)] ∩ (IB − �) ⊂ M IB, (3.1)

where “cone ” stands for the conic hull spanned on the set �− z̄, with the subsequent closure
“cl ”, and where IB signifies the closed unit ball of Z . It is easy to see that (3.1) can be
equivalently expressed as:

‖z − z̄‖ ≤ M‖v‖ for any z ∈ � and v ∈ Z satisfying z − z̄ ≤ v.

It is immediately implied by (1.3) and (3.1) that every super minimal point of � is surely a
minimal/efficient/Pareto point of this set. The notion of super minimal points for sets naturally
induces the following definition of super minimizers to constrained multiobjective problems
in form (1.1), which is the main object of our study in this paper.

Definition 3.1 (super minimizers to multiobjective problems) Let (x̄, z̄) ∈ gph F with x̄ ∈ �.
Then (x̄, z̄) is a local super minimizer to problem (1.1) if there is a neighborhood U of
x̄ such that z̄ is a super minimal point of the image set
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� := F(� ∩ U ) =
⋃

x∈�∩U

F(x),

which can be equivalently written as follows: there is M > 0 such that

‖z − z̄‖ ≤ M‖v‖ whenever x ∈ � ∩ U, z ∈ F(x), v ∈ Z with z − z̄ ≤ v. (3.2)

As always, (x̄, z̄) is a super minimizer to (1.1) if we can choose U = X in (3.2).

To prove the main result of this section, it is useful to give a certain scalarized description
of super minimizers. Given x̄ ∈ �, z̄ ∈ F(x̄), and M > 0, we say that (x̄, z̄) is a local
M-super minimizers to (1.1) if the relationships in (3.2) are satisfied. Given further an
extended-real-valued function ϕ : X × Z → IR, we say that (x̄, z̄) is an x-local minimi-
zer to ϕ if ϕ(x̄, z̄) ≤ ϕ(x, z) for every z ∈ Z and every x from a small neighborhood of
x̄ .

Construct now the function ϕ : X × Z → IR associated with the multiobjective optimi-
zation problem (1.1) and the given triple (x̄, z̄, M) by

ϕ(x, z) := −‖z − z̄‖ + Md�(z) + δ ((x, z);	) , (3.3)

where δ (·;	) is the indicator function of the set	 := gph F ∩ (� × Z) equal to 0 on 	 and
to ∞ on its complement, and where d� : Z → IR is the distance function to the closed and
convex set z̄ − � ⊂ Z ; we omit z̄ in the above notation for simplicity. The following lemma
provides the desired scalarized description of M-minimizes.

Lemma 3.2 (scalarized description of M-super minimizers) Given M > 0, the pair (x̄, z̄)
is a local M-super minimizer to (1.1) if and only if it is an x-local minimizer to the function
ϕ : X × Z → IR defined in (3.3).

Proof Let us first justify the “only if” implication. Given a local M-super minimizer (x̄, z̄),
fix a neighborhood U of x̄ , where the relationships in (3.2) are satisfied. Fix further z ∈ Z
and take any γ > 0. It follows from the definition of d� that there is θ ∈ � such that

‖v‖ ≤ d�(z) + γ for v := z − z̄ + θ. (3.4)

Since z − z̄ ≤ v by (1.2) and since γ > 0 is chosen arbitrarily in (3.4), we conclude from
(3.4) and (3.2) that

‖z − z̄‖ ≤ Md�(z) for all z ∈ F(x) with x ∈ � ∩ U,

which immediately implies that (x̄, z̄) is a x-local minimizer to ϕ given by (3.3).
To prove the “if” implication in the lemma, we argue by contradiction. Assume that (x̄, z̄)

is an x-local minimizer to ϕ, i.e., there is a neighborhood U of x̄ such that

0 = ϕ(x̄, z̄) ≤ ϕ(x, z) = −‖z − z̄‖ + Md�(z) for all x ∈ � ∩ U and z ∈ F(x), (3.5)

but (x̄, z̄) is not a local M-super minimizer to (1.1). The latter gives by (3.2) that there are
x ∈ � ∩ U , z ∈ F(x), and v ∈ Z with v − z + z̄ ∈ � such that

‖z − z̄‖ > M‖v‖ = M‖z − z̄ + (v − z + z̄)‖ ≥ M inf
θ∈�

‖z − z̄ + θ‖ = Md�(z).

This clearly contradicts (3.5) and completes the proof of the lemma. ��
The main result of this section formulated below provides qualified necessary optimality

conditions for super minimizers to problem (1.1) in terms of the normal coderivative (2.3) to
F and the limiting normal cone (2.1) to �, with the qualification condition expressed via the
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mixed coderivative (2.4) of the cost mapping. On the other hand, in the proof of this theorem
we use some well-known subdifferential constructions for extended-real-valued functions
and certain important results for them recalled in what follows.

Given ϕ : X → IR finite at x̄ and given ε ≥ 0, define the ε-subdifferential of ϕ at x̄ by

∂̂εϕ(x̄) :=
{

x∗ ∈ X∗
∣
∣
∣ lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ −ε

}
. (3.6)

For ε = 0, construction (3.6) is known as the Fréchet/regular subdifferential of ϕ at x̄ and
is denoted by ∂̂ϕ(x̄). It is well known that the latter subdifferential ∂̂ϕ(x̄) reduces to the
classical subdifferential of convex analysis for convex functions ϕ, while it may be empty
for simple nonconvex functions as, e.g., for ϕ(x) = −|x | at 0 ∈ IR.

Even more serious disadvantage of (3.6) is a poor pointwise calculus; e.g., the standard
sum rule ∂̂(ϕ1 +ϕ2)(x̄) ⊂ ∂̂ϕ1(x̄)+ ∂̂ϕ2(x̄) does not hold in elementary situations. Recently
the following rather surprising sum rule

∂̂(ϕ1 + ϕ2)(x̄) ⊂
⋂

x∗∈̂∂+ϕ1(x̄)

[
x∗ + ∂̂ϕ2(x̄)

]
(3.7)

has been discovered in [18] for arbitrary extended-real-valued functions on Banach spaces
provided that the upper counterpart of the Fréchet subdifferential

∂̂+ϕ(x̄) := −∂̂(−ϕ)(x̄)

of ϕ1 at x̄ is nonempty in (3.7); see [16,18] for verifiable conditions ensuring this property.
Another subdifferential construction used in what follows is the (basic, limiting,

Mordukhovich) subdifferential of ϕ : X → IR finite at x̄ defined by

∂ϕ(x̄) := Lim sup
x

ϕ→x̄
ε↓0

∂̂εϕ(x), (3.8)

where the symbol x
ϕ→ x̄ stands for x → x̄ withϕ(x) → ϕ(x̄), and where we can equivalently

put ε = 0 if the space X is Asplund and if the function ϕ is lower semicontinuous (l.s.c.)
around x̄ . We have the basic subdifferential sum rule

∂(ϕ1 + ϕ2)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) (3.9)

provided that the X is Asplund and that ϕ1 is Lipschitz continuous around x̄ while ϕ2 is l.s.c.
around this point; see [16, Theorem 2.33].

Now we are ready to formulate and prove the main coderivative necessary conditions for
super minimizers to the constrained multiobjective problem (1.1).

Theorem 3.3 (general necessary coderivative conditions for super minimizers) Let (x̄, z̄) ∈
gph F be a local super minimizer to problem (1.1), where the spaces X and Z are Asplund,
and where Z is partially ordered via (1.2) by a closed and convex cone � ⊂ Z. Assume that
the graph of F and the set � are locally closed around (x̄, z̄) and x̄, respectively, and that
the cone � is SNC at the origin. Furthermore, impose the requirements:

(a) either F is PSNC at (x̄, z̄), or � is SNC at x̄;
(b) the qualification condition on {F,�} is satisfied:

D∗
M F(x̄, z̄)(0) ∩ (−N (x̄;�)) = {0}, (3.10)

which both hold automatically when F is Lipschitz-like around (x̄, z̄).
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Then taking M > 0 from Definition 3.1 of local super minimizers and taking any v∗ from
the closed unit ball of Z∗, we find −z∗ ∈ N (0;�) with ‖z∗‖ ≤ M such that

0 ∈ D∗
N F(x̄, z̄)(z∗ − v∗) + N (x̄;�). (3.11)

Proof Given a local minimizer (x̄, z̄) to problem (1.1), find a constant M > 0 such that (x̄, z̄)
is a local M-minimizer defined above. By Lemma 3.2 we conclude that (x̄, z̄) is a x-local
minimizer over X × Z to the function ϕ constructed in (3.3). Then the generalized Fermat
rule from [16, Proposition 1.114] gives

0 ∈ ∂̂ϕ(x̄, z̄) = ∂̂ [−‖ · −z̄‖ + Md�(·) + δ(·;	)] (x̄, z̄). (3.12)

Employing now the Fréchet subdifferential sum rule (3.7) to the functions

ϕ1(x, z) := −‖z − z̄‖ and ϕ2(x, z) := Md�(z) + δ ((x, z);	)

in (3.12) and taking into account that

∂̂+ (−‖ · −z̄‖) (x̄, z̄) = −∂̂ (‖ · −z̄‖) (x̄, z̄) = {0} × IB∗

via the closed unit ball IB∗ in Z∗, we obtain in this way that

∂̂ [−‖ · −z̄‖ + (Md�(·) + δ(·;	))] (x̄, z̄) ⊂
⋂

z∗∈IB∗

[
(0, z∗) + ∂̂ (Md�(·) + δ(·;	)) (x̄, z̄)

]
.

The latter inclusion implies by (3.12) that

{0} × IB∗ ⊂ ∂̂ (Md�(·) + δ(·;	)) (x̄, z̄) ⊂ ∂ (Md�(·) + δ(·;	)) (x̄, z̄). (3.13)

Since the product space X × Z is Asplund, we apply the basic subdifferential sum rule (3.9)
to the semi-Lipschitzian sum in (3.13) and get the inclusion

{0}×IB∗ ⊂ ∂ (Md�(·)) (x̄, z̄) + ∂δ ((x̄, z̄);	) = {0}×M∂d�(z̄) + ∂δ ((x̄, z̄);	), (3.14)

where the last representation is due to d�(·) = d�(z). Taking into account that

	 = 	1 ∩ 	2 with 	1 := gph F and 	2 := � × Z (3.15)

and observing that δ ((x̄, z̄);	)) = N ((x̄, z̄);	1 ∩ 	2) and that

∂d�(z̄) = IB∗ ∩ N (z̄; z̄ − �) = IB∗ ∩ (−N (0;�))

by [16, Theorem 1.96], we get from (3.14) that

{0} × IB∗ ⊂ {0} × [
M IB∗ ∩ (−N (0;�))

] + N ((x̄, z̄);	1 ∩ 	2) . (3.16)

To proceed further in (3.16), employ the intersection rule for basic normals from [16,
Theorem 3.4] to the intersection 	1 ∩ 	2 of the sets 	1 and 	2 defined in (3.15). It is easy
to check that assumption (a) of the theorem and structures (3.15) of the sets 	i ensure that
either 	1 is PSNC at (x̄, z̄) with respect to X and the other set �2 is strongly PSNC at this
point with respect to Z , or 	2 is SNC at (x̄, z̄). It also follows from the structures of the set
	1 and 	2 that the qualification condition (3.10) in terms of the mixed coderivative of the
cost mapping F implies the limiting qualification condition imposed in [16, Theorem 3.4].
Thus we get the inclusion

N ((x̄, z̄);	1 ∩ 	2) ⊂ N ((x̄, z̄);	1) + N ((x̄, z̄);	2) . (3.17)
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Substituting finally (3.17) into (3.16) with taking into account the structures of 	i and
definition (2.3) of the normal coderivative, we arrive at the necessary condition (3.11) with
−z∗ ∈ N (0;�) and ‖z∗‖ ≤ M and thus complete the proof of the theorem. ��

Remark 3.4 (qualified form of optimality conditions). Note that the necessary conditions for
super minimizers obtained in Theorem 3.3 are of qualified form provided that � �= {0}. The
latter means that we do not have

z∗ − v∗ = 0 for all v∗ ∈ IB∗ with − z∗ ∈ N (0;�)

in (3.11). Indeed, the opposite immediately yields that

IB∗ ⊂ N (0;�) = Z∗

and therefore � = {0}, a contradiction.

Before deriving other necessary conditions for super minimizers to the general constrai-
ned multiobjective problem (1.1) and its specifications, let us present two simple examples
illustrating the application of the results obtained in Theorem 3.3, their comparison with the
corresponding necessary conditions for Pareto minimizers and weak Pareto minimizers, and
also discuss the relationships of the results obtained for super minimizers with those known
in the literature.

Example 3.5 (illustration of necessary conditions for super minimizers). Consider problem
(1.1) with � = IR2+ (the nonnegative orthant of IR2), � = IR, and the constant set-valued
mapping F : IR →→ IR2 given by

F(x) ≡ � with � := {
(z1, z2) ∈ IR2

∣
∣ z1 + 2z2 ≥ 0 or 2z1 + z2 ≥ 0

}
. (3.18)

It is easy to check that (x̄, z̄) = (0, 0) ∈ IR × IR2 is a super minimizer to the problem under
consideration; actually it is a super minimal point of the set � in (3.18). All the assumptions
of Theorem 3.3 are trivially satisfied. By definition of the basic normal cone (2.1) we have

N (0; IR2+) = IR2− and N ((0, 0); epi F) = {0} × 	, where

	 := {
(z1, z2) ∈ IR2−

∣
∣ 2z1 − z2 = 0 or − z1 + 2z2 = 0

}
.

Since IR2+ + 	 = IR2, for any v from the closed unit ball of IR2 we find u ∈ IR2 with
−u ∈ N (0; IR2+) = IR2− such that v − u ∈ 	. Thus

0 ∈ D∗F(0, 0)(v − u) = D∗F(0, 0)(v − u) + N (0; IR)

for the vectors v and u under consideration, and the optimality condition (3.11) is satisfied.

The next example shows that the necessary condition (1.5) for minimizers and weak
minimizers to problem (1.1) recently obtained in [2,3] does not provide a necessary condition
for super minimizers.

Example 3.6 (comparison with necessary conditions for minimizers and weak minimizers).
Consider problem (1.1) with �=IR2+, �=IR, and the set-valued cost mapping F : IR →→ IR2

given by

F(x) ≡ IR2\(int IR2−) with epi F = gph F.
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It is easy to see that (x̄, z̄) = (0, 0) ∈ IR × IR2 is a weak minimizer to this problem—actually
z̄ = 0 ∈ IR2 is a weak efficient point of the set IR2\(int IR2−)—while it is not a super
minimizer to this problem. Let us check the fulfillment of the necessary conditions (1.5) and
(3.11). We directly compute the corresponding coderivative and subdifferential used in (1.5)
and (3.11). Indeed, we have

N ((0, 0); epi F) = N ((0, 0); gph F) = {0} × bd IR2−,

D∗F(0, 0)(u1, u2) = ∂ F(0, 0)(u1, u2) =

⎧
⎪⎨

⎪⎩

0 if u1 = 0 and u2 ≥ 0,

0 if u2 = 0 and u1 ≥ 0,

∅ otherwise,

and so the necessary condition (1.5) is satisfied for (0, 0). Taking now arbitrary vectors

v := (v1, v2) = −
(√

2

2
,

√
2

2

)

and − u := (−u1,−u2) ∈ N (0; IR2+) = IR2−,

we immediately arrive at the following relationships for these vectors:

u1 − v1 > 0, u2 − v2 > 0, and D∗F(0, 0)(u − v) = ∅,

which show that the condition (3.11) is not satisfied. This confirms by Theorem 3.3 that (0, 0)

is not a super minimizer to the problem (1.1) under consideration.

Remark 3.7 (comparison with known conditions for super minimizers). Quite recently, Huang
[12] has obtained necessary conditions for super minimizers to problem (1.1) that are expres-
sed in terms of the Clarke generalized differential constructions and extend previous results in
this direction; see [12] for more discussions and references. Taking into account the relation-
ship between the Clarke normal cone and our basic normal cone from [16, Theorem 3.57],
the main necessary conditions derived in [12] can be written in the form of Theorem 3.3 with
the replacement of (3.11) by

0 ∈ D
∗

F(x̄, z̄)(z∗ − v∗) + cl ∗co N (x̄;�), (3.19)

where “cl ∗co” stands for the convex closure of a dual space subset in the corresponding
weak∗ topology, and where we use the notation

D
∗

F(x̄, z̄)(u∗) := {
x∗ ∈ X∗∣∣ (x∗,−u∗) ∈ cl ∗co N ((x̄, z̄); gph F)

}
. (3.20)

The necessary conditions of [12] are justified under certain tangential qualification assump-
tions and interiority-type requirements, which are significantly more restrictive than the
qualification assumption (3.10) and the PSNC/SNC properties imposed in Theorem 3.3. We
are not going to discuss these relationships in more detail here while focusing only on the
comparison between necessary optimality conditions (3.11) and (3.19).

It turns out that condition (3.19) is not just trivially implied by (3.11) but the convexifi-
cation operation in (3.20) may dramatically enlarge the first set on the right-hand side of
(3.11)—as much as often getting there the whole space—in many situations important for
both the theory and application. More precisely, for any locally Lipschitzian single-valued
mapping F : X → Z the convexified normal cone in (3.20) is always a linear subspace
of X∗ × Z∗ whose dimension is not less than m if Z = IRm ; see [16, Theorem 3.62 and
Corollary 3.67]. Moreover, these facts hold not only for graphs of single-valued locally Lip-
schitzian mappings but also for set-valued mappings whose graphs are Lipschitzian manifolds,
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or hemi-Lipschitzian sets; see [16, Theorem 3.72]. The latter objects include maximal mono-
tone operators and subdifferential mappings for convex and major classes of nonconvex (e.g.,
prox-regular) functions typically encountered in variational analysis and optimization; see
more details and discussions in [16, Subsection 1.2.2 after Definition 1.45]. When both spaces
X and Z are finite-dimensional, the afore-mentioned results go back to the seminal paper
by Rockafellar [19]. These discussions reveal therefore crucial limitations of the optimality
condition (3.19) in comparison with the new one in (3.11).

A visible disadvantage of the optimality condition (3.11) is that it involves all elements v∗
from the unit ball of Z∗ and does not constructively specify the choice of the corresponding
normal −z∗ ∈ N (0;�). The next theorem establishes a new version of necessary conditions
for super minimizers to (1.1) that is more verifiable and convenient for applications. Its proof
requires, however, the additional normal interiority assumption

int N (0;�) �= ∅ (3.21)

imposed on the ordering cone �. Note that assumption (3.21) does not require that int � �= ∅
and automatically holds provided that the cone � is closed and convex with a bounded base,
i.e., when there is a bounded convex set �B ⊂ Z such that

� = IR+�B and 0 /∈ cl �B .

Theorem 3.8 (verifiable conditions for super minimizers under the interiority assumption)
Let (x̄, z̄) ∈ gph F be a local super minimizer to problem (1.1) under all the assumptions of
Theorem 3.3. Suppose in addition that � �= {0} and that the interiority requirement (3.21)
is satisfied. Then there is −z∗ ∈ int N (0;�) with ‖z∗‖ = 1 such that

0 ∈ D∗
N F(x̄, z̄)(z∗) + N (x̄;�). (3.22)

Proof It immediately follows from the set inclusion (3.16) justified in Theorem 3.3 that

{0} × IB∗ ⊂ {0} × (−N (0;�)) + N ((x̄, z̄);	) (3.23)

with the closed unit ball IB∗ ⊂ Z∗ and the intersection set 	 defined in (3.15). Denoting

C∗ := {
z∗ ∈ Z∗∣∣ (0, z∗) ∈ N ((x̄, z̄);	)

}
, (3.24)

we have from (3.23) that IB∗ ⊂ C∗ − N (0;�) and hence the space Z∗ admits the representa-
tion Z∗ = C∗ − N (0;�), since the latter sets are cones. Using this decomposition of Z∗ and
the interiority assumption of the theorem, pick an element u∗ ∈ int N (0;�) and represent it
as u∗ = c∗ − p∗ with c∗ ∈ C∗ and p∗ ∈ N (0;�). Thus

c∗ = u∗ + p∗ ∈ int N (0;�) + N (0;�) ⊂ int N (0;�). (3.25)

It follows from (3.25) that c∗ �= 0; otherwise 0 ∈ int N (0;�) and hence N (0;�) = Z∗,
which contradicts the assumption � �= {0} of the theorem. Letting now z∗ := −c∗/‖c∗‖, we
get from the structures of C∗ in (3.27) and 	 in (3.15) that

(0,−z∗) ∈ N ((x̄, z̄);	1 ∩ 	2) with − z∗ ∈ int N (0;�) and ‖z∗‖ = 1. (3.26)

Employing finally the intersection rule (3.17) justified in the proof of Theorem 3.3, we arrive
from (3.26) to all the conclusions of this theorem. ��

Note that the new necessary condition (3.22) is more convenient to deal with in comparison
with the previous condition (3.11) from Theorem 3.3. To illustrate this, consider Example 3.6.
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It immediately follows from the explicit formula for computing the coderivative presented
above that there is no −z∗ ∈ int N (0;�) = int IR2− satisfying (3.22). Thus (x̄, z̄) = (0, 0) is
not a super minimizer to the multiobjective problem under consideration.

Observe that both Theorem 3.3 and Theorem 3.8 impose the SNC requirement on the
ordering cone � at the origin, while Theorem 3.8 requires in addition that int N (0;�) �= ∅.
As we know, in finite dimensions any set is SNC, and the normal interiority assumption
(3.21) is not restrictive. On the other hand, these requirements seem to be rather restrictive
in infinite dimensions. Let us give a simple example showing that both of these properties
hold for natural ordering cones in Hilbert spaces.

Example 3.9 (ordering cones with SNC and normal interiority properties in infinite dimen-
sions). Let �2 be the classical Hilbert space of sequences, and let {e1, e2, . . .} be an ortho-
normal basic of it. Construct the convex cone � ⊂ �2 as the conic hull of the ball

� := cone B (e1, 1/2) with B (e1; 1/2) := {
x ∈ �2

∣
∣ ‖x − e1‖ ≤ 1/2

}
.

Since e1 ∈ int �, the cone � is SNC at the origin. We have by definition that

N (0;�) = {
x∗ ∈ �2

∣
∣ 〈x∗, x〉 ≤ 0 if x ∈ �

} = {
x∗ ∈ �2

∣
∣ 〈x∗, x〉 ≤ 0 if x ∈ B (e1; 1/2)

}

Let us show that −e1 ∈ int N (0;�), which follows from the relationship

〈x∗, x〉 ≤ 0 whenever x∗ ∈ B (−e1; 1/2) and x ∈ B (e1; 1/2). (3.27)

Indeed, for all such x∗ = (x∗
1 , x∗

2 , . . .) ∈ �2 and x = (x1, x2, . . .) ∈ �2 we conclude from
the norm definition in �2 that

x∗
1 ∈

[
−3

2
,−1

2

]
,

∞∑

i=2

(x∗
i )2 ≤ 1

4
and x1 ∈

[
1

2
,

3

2

]
,

∞∑

i=2

x2
i ≤ 1

4
.

Then the classical Cauchy-Schwarz inequality gives

〈x∗, x〉 = x∗
1 x1 +

∞∑

i=2

x∗
i xi ≤ x∗

1 x1 +
( ∞∑

i=2

(x∗
i )2

) 1
2
( ∞∑

i=2

x2
i

) 1
2

≤ −1

2
· 1

2
+ 1

2
· 1

2
= 0,

which justifies (3.27) and thus the desired properties of the cone � under consideration.

Finally in this section, we present new necessary conditions for super minimal points of
sets that follow from Theorem 3.3 and Theorem 3.8.

Corollary 3.10 (necessary conditions for super minimal points of sets). Let Z be an Asplund
space partially ordered by a closed and convex cone � ⊂ Z that is SNC at the origin. If
z̄ ∈ � is a super minimal point of the set � ⊂ Z locally closed around z̄, then for any v∗
from the closed unit ball IB∗ of Z∗ there is z∗ ∈ N (0;�) such that

z∗ − v∗ ∈ N (z̄;�) and ‖z∗‖ ≤ M, (3.28)

where M > 0 is taken from definition (3.1) of the super minimal point. If furthermore
int N (0;�) �= ∅, than there is z∗ ∈ Z∗ with ‖z∗‖ = 1 such that

z∗ ∈ N (z̄;�) and z∗ ∈ int N (0;�). (3.29)
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Proof The first assertion of the corollary involving condition (3.28) follows from Theorem 3.3
applied to the constant mapping F(x) ≡ � and � = X . It is easy to see that (3.28) follows
from the coderivative condition (3.11) due to the product formula

(0,−z∗) ∈ N ((x̄, z̄); gph F) = {0} × N (z̄;�).

In the same way condition (3.29) follows from condition (3.22) of Theorem 3.8. ��
Comparing condition (3.29) for super minimal points with condition (1.5) for minimal and

weak minimal ones and taking into account the subdifferential construction (2.3) in (1.5),
observe that the main difference between the necessary conditions for super minimal and
minimal/weak minimal points is that we get −z∗ belonging to the interior of N (0;�) in
the first case in comparison with just −z∗ ∈ N (0;�) in the second one. Furthermore, the
necessary condition (3.29) for super minimal points to � yields

N (z̄;�) − N (0;�) = Z∗

due to int N (0;�) �= ∅, which obviously implies the condition

0 ∈ int
(−cl ∗co N (0;�) + cl ∗co N (z̄;�)

)

established in [21] under significantly more restrictive assumptions.
Finally in this section, let us illustrate the efficiency of the more involved necessary condi-

tion (3.28) for super minimal points in the situation when condition (3.29) is not applicable.
Consider the ordering cone � ⊂ IR2 given by

� := {
z ∈ IR2

∣
∣ z1 ≥ 0

}
,

which is obviously not pointed with the empty interior of the normal cone

N (0;�) = {
z ∈ IR2

∣
∣ z1 ≤ 0, z2 = 0

}
.

Taking the set � := � and the point 0 ∈ �, we cannot employ condition (3.29) to check
the super minimality of this point. On the other hand, choosing (v1, v2) = (0, 1) ∈ IB, we
have z2 = 0 for any (z1, z2) ∈ N (0;�), and hence (z1 − v1, z2 − v2) = (z1, 1) /∈ N (0;�).
Condition (3.28) allows us to conclude that 0 is not a super minimal point of the set � with
respect to the ordering cone � under consideration.

4 Coderivative-subdifferential relationships and subdifferential conditions for super
minimizers

The primary goal of this section is to derive necessary conditions of the subdifferential type
for super minimizers to the original multiobjective problem (1.1). We derive subdifferential
conditions under some additional assumptions in comparison with the coderivative ones in
Sect. 3 and establish relationships between these two types of necessary conditions for super
minimizers to (1.1). To proceed, we first discuss relationships between coderivatives and
subdifferentials of general set-valued mappings between Banach spaces for which the range
spaces are partially ordered by a closed and convex cone. The results obtained in this direction
are certainly of independent interest.

The following property of set-valued and single-valued mappings with partially ordered
range spaces generalizes the classical lower semicontinuity of extended-real-valued functions
being important for deriving coderivative-subdifferential relationships.
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Definition 4.1 (order semicontinuity of set-valued mappings) Let F : X →→ Z be a set-valued
mapping between two Banach spaces, where the range space Z is partially ordered via
(1.2) by a closed and convex cone � ⊂ Z . We say that F is order semicontinuous at
(x̄, z̄) ∈ gph F if for any sequence {(xk, zk)} ⊂ epi F converging to (x̄, z̄) there is a sequence
{(xk, vk)} ⊂ gph F with vk ≤ zk such that {vk} contains a subsequence converging to z̄.

It is easy to see that, besides lower semicontinuous extended-real-valued functions, this
class contains every single-valued mapping f : X → Z continuous at x̄ . Let us present a
general condition ensuring the fulfillment of order semicontinuity for a large class of set-
valued mappings at minimal/efficient points of the corresponding image sets. Recall that by
(1.3) the minimal set to � with respect to the ordering cone � is described by

Min � := {
z̄ ∈ �

∣
∣ z̄ − z /∈ � whenever z ∈ �, z �= z̄

}
.

Proposition 4.2 (sufficient conditions for order semicontinuity) Let F : X →→ Z be closed-
graph and locally compact around x̄ ∈ dom F in the setting of Definition 4.1. Then it is order
semicontinuous at (x̄, z̄) for every z̄ ∈ Min F(x̄).

Proof Fix z̄ ∈ Min F(x̄) and take any sequence {(xk, zk)} ⊂ epi F converging to (x̄, z̄). By
definition of the epigraph epi F , we select a sequence {vk} satisfying

vk ∈ F(xk) and vk ≤ zk for all k ∈ IN . (4.1)

By the local compactness of F around x̄ , suppose without loss of generality that the sequence
{vk} converges to some point v̄, which belongs to F(x̄) due to the closed-graph property of
F around x̄ . To justify the order semicontinuity of F at (x̄, z̄), it remains to show that v̄ = z̄.
Since � is a closed set, it follows from (4.1) that v̄ ≤ z̄. By the choice of z̄ ∈ Min F(x̄) we
get therefore that v̄ = z̄, which completes that proof of the proposition. ��

Observe that the choice of z̄ ∈ Min F(x̄) in Proposition 4.2 is essential for the validity
of the order semicontinuity property of F at (x̄, z̄). To illustrate this, consider a mapping
F : IR →→ IR defined by

F(x) :=
{

0 if x �= 0,

[0, 1] if x = 0.

Taking 1 ∈ F(0)\(Min F(0)), we check that F is not order semicontinuous at (0, 1) ∈ gph F .
Indeed, the sequence {(k−1, 1)} ⊂ epi F converges to (0, 1) while the uniquely corresponding
to it sequence from the graph {(k−1, 0)} ⊂ gph F converges to (0, 0).

The above order semicontinuity property is crucial to establish the following relation-
ships between the subdifferential (2.6) and the normal coderivative (2.3) of mappings in the
corresponding directions.

Proposition 4.3 (relationships between subdifferentials and normal coderivatives of map-
pings) Let F : X →→ Z be a mapping between Banach spaces, where Z is partially ordered by
a closed and convex cone � ⊂ Z. Assume that F is order semicontinuous at (x̄, z̄) ∈ gph F.
Then we have the inclusion

∂ F(x̄, z̄)(z∗) ⊂ D∗
N F(x̄, z̄)(z∗) for all z∗ ∈ Z∗. (4.2)

Proof Using the subdifferential definition (2.6) and taking any z∗ ∈ Z∗, we fix some subgra-
dient x∗ ∈ ∂ F(x̄, z̄)(z∗) := D∗

N EF (x̄, z̄)(z∗) and find by (2.3) and (2.1) sequences εk ↓ 0,

(xk, zk) → (x̄, z̄), and (x∗
k , z∗

k )
w∗→ (x∗, z∗) as k → ∞ satisfying
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(xk, zk) ∈ epi F and (x∗
k ,−z∗

k ) ∈ N̂εk ((xk, zk); epi F) , k ∈ IN . (4.3)

By the order semicontinuity property of F at (x̄, z̄), there is a sequence

vk ∈ F(xk) with vk ≤ zk and vk → z̄ as k → ∞, (4.4)

where we take all k ∈ IN without loss of generality. It follows from the second inclusion in
(4.3) and definition (2.2) that for any γ > 0 there is η > 0 such that

〈
(x∗

k ,−z∗
k ), (x, z) − (xk, zk)

〉 ≤ (γ + εk)
∥
∥(x, z) − (xk, zk)

∥
∥ (4.5)

whenever (x, z) ∈ epi F , x ∈ xk + ηIB, z ∈ zk + ηIB, and k ∈ IN . Using the construction of
epi F generated by the ordering cone �, we get the relationship

zk = vk + θk with some θk ∈ �, k ∈ IN . (4.6)

Taking further an arbitrary vector (u, v) ∈ epi F with u ∈ xk + ηIB and v ∈ vk + ηIB, we
find (̃vk, θ̃k) ∈ Z × Z by the above epigraphical construction such that

v = ṽk + θ̃k with ṽk ∈ F(u) and θ̃k ∈ �, k ∈ IN . (4.7)

Now we define the vector vk := v + (zk − vk) and get from (4.6), (4.7), and the convexity of
the ordering cone � that

vk = ṽk + θ̃k + θk ∈ F(u) + �, k ∈ IN .

Since ‖vk − zk‖ = ‖v − vk‖ ≤ η, we have by the construction of vk that

(u, vk) ∈ epi F with u ∈ xk + ηIB and vk ∈ zk + ηIB.

Substituting now (u, vk) into the εk-normal relationship (4.5) and taking into account that
vk − zk = v − vk , we get

〈
(x∗

k ,−z∗
k ), (u, v) − (xk, vk)

〉 ≤ (γ + εk)
∥
∥(u, v) − (xk, vk)

∥
∥, k ∈ IN . (4.8)

Since γ > 0 and (u, v) ∈ (xk, vk) + η(IB × IB) were chosen arbitrarily and since the sets
of ε-normals enjoy the monotonicity property N̂ε(ȳ;�) ⊂ N̂ε(ȳ; �̃) whenever ȳ ∈ �̃ ⊂ �

and ε ≥ 0, we arrive from (4.8) at the inclusions

(x∗
k ,−z∗

k ) ∈ N̂εk ((xk, vk); epi F) ⊂ N̂εk ((xk, vk); gph F) , k ∈ IN .

The latter gives, by (4.4) as k → ∞ and definitions (2.1) and (2.3), that x∗ ∈ D∗
N F(x̄, z̄)(z∗),

which ensures (4.2) and completes the proof of the proposition. ��
The next proposition establishes relationships between the mixed coderivatives (2.4) of the

mapping F and the associated epigraphical multifunction (2.5), which implies the opposite
inclusion in (4.2) when dim Z < ∞.

Proposition 4.4 (relationships between mixed coderivatives of mappings and the associated
epigraphical multifunctions) Let F : X →→ Z be a set-valued mapping between Banach
spaces under the assumptions of Proposition 4.3 fulfilled at some point (x̄, z̄) ∈ gph F. Then
we have the inclusion

D∗
M F(x̄, z̄)(z∗) ⊂ D∗

MEF (x̄, z̄)(z∗) whenever inf
θ∈�

〈z∗, θ〉
‖θ‖ =: ν > 0. (4.9)
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Proof Pick any x∗ ∈ D∗
M F(x̄, z̄)(z∗), where z∗ ∈ Z∗ satisfies the conditions in (4.9). By the

mixed coderivative definition (2.4) we find sequences εk ↓ 0, (xk, zk) → (x̄, z̄), x∗
k

w∗→ x∗,
and z∗

k → z∗ as k → ∞ such that

(xk, zk) ∈ gph F and (x∗
k ,−z∗

k ) ∈ N̂εk ((xk, zk); gph F) for all k ∈ IN . (4.10)

For simplicity and without loss of generality, we can assume that z∗
k = z∗ for all k ∈ IN , since

otherwise (x∗
k ,−z∗) ∈ N̂ε̃k ((xk, zk); gph F) with ε̃k := εk + ‖z∗

k − z∗‖ → 0 as k → ∞. To
justify (4.9), let us first show that

(x∗
k ,−z∗) ∈ N̂εk ((xk, zk); epi F) for large k ∈ IN . (4.11)

Arguing by contradiction, suppose that (4.11) does not hold for the chosen element z∗ satis-
fying the condition in (4.9) with some ν > 0 and a fixed number k ∈ IN large enough to
have ν − εk > 0. Then we find a number 0 < γ < ν − εk and a sequence {(ui , vi )} ⊂ epi F
with (ui , vi ) → (xk, zk) as i → ∞ such that

〈
(x∗

k ,−z∗), (ui , vi ) − (xk, zk)
〉
> (γ + εk)

∥
∥(ui , vi ) − (xk, zk)

∥
∥, i ∈ IN . (4.12)

Using the order semicontinuity of F similarly to the proof of Proposition 4.3, we find a
sequence ṽi → zk as i → ∞ such that

vi = ṽi + θi and ṽi ∈ F(ui ) with some θi ∈ � as i ∈ IN . (4.13)

If follows from the requirement on z∗ in (4.9) that 〈z∗, θi 〉 ≥ ν‖θi‖ for all i ∈ IN . Taking
this into account and substituting (ui , ṽi ) from (4.13) into (4.12), we get by ν > γ + εk that

〈
(x∗

k ,−z∗), (u, ṽi ) − (xk, zk)
〉
> (γ + εk)‖(ui , ṽi + θi ) − (xk, zk)‖ + 〈z∗, θi 〉

≥ (γ + εk)‖(ui , ṽi ) − (xk, zk)‖ + ν‖θi‖ − (γ + εk)‖θi‖
≥ (γ + εk)‖(ui , ṽi ) − (xk, zk)‖ for all i ∈ IN ,

which means that (x∗
k ,−z∗) /∈ N̂εk ((xk, zk); gph F). The latter contradicts (4.10) and thus

justifies inclusion (4.11) for all k ∈ IN sufficiently large, where we can replace z∗ by z∗
k → z∗.

Passing finally to the limit in (4.11) as k → ∞ and taking into account definition (2.4) of the
mixed coderivative for the epigraphical multifunction (2.5), we get x∗ ∈ D∗

MEF (x̄, z̄)(z∗)
and complete the proof of the proposition. ��

Let us present two corollaries of the results established in Proposition 4.3 and Proposi-
tion 4.4 ensuring the equality relationships between subdifferentials and coderivatives.

Corollary 4.5 (subdifferential-coderivative equality for set-valued mappings). Let dim Z <

∞ under the assumptions of Proposition 4.3. Then

∂ F(x̄, z̄)(z∗) = D∗F(x̄, z̄)(z∗) whenever inf
θ∈�

〈z∗, θ〉
‖θ‖ > 0. (4.14)

Proof This follows directly from inclusions (4.2) and (4.9), since the normal and mixed
coderivatives agree for mappings with finite-dimensional range spaces. ��

Corollary 4.5 easily implies the unconditional equality between the basic/limiting sub-
differential and the corresponding coderivative of l.s.c. extended-real-valued functions on
arbitrary Banach spaces. Note that, despite the range space of extended-real-valued func-
tions ϕ : X → IR is not standard, the coderivative definition (2.3) involving only graphical
points gph ϕ ⊂ X × IR makes sense in this case.
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Corollary 4.6 (subdifferential-coderivative equality for lower semicontinuous functions).
Let ϕ : X → IR be finite at x̄ and l.s.c. around this point on the Banach space X. Then we
have the equality

∂ϕ(x̄) = D∗ϕ(x̄)(1). (4.15)

Proof Immediately follows from Corollary 4.5 with � = R+ and z∗ = 1. ��
The result obtained in Corollary 4.6 extends the one from [16, Theorem 1.80] establi-

shed for continuous real-valued functions. The example presented right after the proof of
Theorem 1.80 in [16] shows that we do not have the equality ∂∞ϕ(x̄) = D∗ϕ(x̄)(0) for
the singular subdifferential of continuous functions ϕ : IR → IR. This illustrates that the
requirement on z∗ imposed in (4.14) is essential.

Let us derive new necessary conditions for super minimizers to the constrained multiob-
jective problem (1.1) expressed via subdifferentials of the cost mapping. The coderivative-
subdifferential relationships obtained above allow us to compare these subdifferential condi-
tions for super minimizers with the coderivative ones derived in Sect. 3.

In accordance with the conventional terminology in multiobjective optimization (see, e.g.,
[13,15]), we say that the ordering cone � ⊂ Z has the normality property if its combination
(IB +�)∩ (IB −�) with the unit ball IB ⊂ Z is bounded. It is easy to see that the normality
property of � implies its pointedness, but not visa versa.

It is well known (see, e.g., [13, Lemma 3.14]), that every minimal point of � is also a
minimal point of the set � + � while the reversed implication holds if � is pointed. The
following lemma establishes similar (but somewhat different) relationships between super
minimal points of the sets � and � + �.

Lemma 4.7 (relationships for super minimality) Let � ⊂ Z be a nonempty subset of a
Banach space ordered by a convex cone �. The following relationships hold:

(i) Every super minimal point of the set � + � is a super minimal point of the set �.
(ii) If the ordering cone � has the normality property, then every super minimal point of

the set � is a super minimal point of the set � + �.

Proof Assertion (i) follows directly from the definition of super minimality (3.1). To justify
assertion (ii), fix an arbitrary super minimal point of the set �. By definition (3.1) for any
z ∈ cone (� + � − z̄) ∩ (IB − �) there are ξ ∈ �, θ ∈ �, and t ≥ 0 such that z =
t (ξ + θ − z̄) ∈ IB − �. Thus we have t (ξ − z̄) ∈ IB − � by the convexity of �. Then the
super minimality property (3.1) implies that

t (ξ − z̄) ∈ cone (� − z̄) ∩ (IB − �) ⊂ M IB,

and therefore we arrive at the inclusion

z = t (ξ − z̄) + tθ ∈ (M IB + �) ∩ (IB − �).

By the normality property of �, the set (IB + �) ∩ (IB − �) is bounded, and hence there is
K > 0 such that z ∈ K IB, which gives

cone (� + � − z̄) ∩ (IB − �) ⊂ K IB.
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The latter justifies the super minimality of z̄ for the set � + � and thus completes the proof
of the lemma. ��

Observe that the normality property of the ordering cone � in Lemma 4.7(ii) cannot be
dropped. Indeed, consider the ordering cone � = {z ∈ IR2| z1 ≥ 0} and the set � = {0} in
IR2. It is easy to check that 0 is a super minimal point of � but not of the set � + �.

Now we are ready to derive subdifferential conditions for super minimizers to the original
multiobjective problem (1.1) of our study.

Theorem 4.8 (subdifferential conditions for super minimizers to multiobjective problems)
Let (x̄, z̄) ∈ gph F be a local super minimizer to problem (1.1), where both spaces X and Z
are Asplund, and where Z is partially ordered via (1.2) by a closed and convex cone � ⊂ Z
satisfying the normality property. Assume that the epigraph of F and the set � are locally
closed around (x̄, z̄) and x̄, respectively, that the cone � is SNC at the origin, and that the
following requirements are fulfilled:

(a) either F is partially SNEC at (x̄, z̄), or � is SNC at x̄;
(b) the pair {F,�} satisfies the qualification condition

∂∞F(x̄, z̄) ∩ (−N (x̄;�)) = {0}, (4.16)

where both requirements (a) and (b) hold automatically when F is ELL around (x̄, z̄).
Then taking M > 0 from Definition 3.1 of local super minimizers and taking any v∗ from

the closed unit ball of Z∗, we find −z∗ ∈ N (0;�) with ‖z∗‖ ≤ M such that

0 ∈ ∂ F(x̄, z̄)(z∗ − v∗) + N (x̄;�). (4.17)

Assuming in addition that int N (0;�) �= ∅, we get −z∗ ∈ int N (0;�) with ‖z∗‖ = 1 and

0 ∈ ∂ F(x̄, z̄)(z∗) + N (x̄;�). (4.18)

Proof Considering the epigraphical multifunction EF from (2.5) and using the normality
property of the ordering cone �, we conclude from Lemma 4.7(ii) that every local super
minimizer (x̄, z̄) ∈ gph F to the original problem (1.1) is also a local super minimizer to the
auxiliary multiobjective problem:

minimize EF (x) subject to x ∈ �, (4.19)

where the cost mapping F is replaced by its epigraphical multifunction. Applying now Theo-
rem 3.3 to the new problem (4.19) and taking into account the subdifferential constructions for
set-valued mappings presented in Sect. 2 as well as the definitions and results for the partial
SNEC and ECC properties given therein, we derive the qualification condition (4.16) and the
optimality condition (4.17) of this theorem from the corresponding results of Theorem 3.3.
The refined optimality condition (4.18) under the additional assumption on the nonempty
interior of N (0;�) �= ∅ follows respectively from Theorem 3.8. ��

Remark 4.9 (relationships between subdifferential and coderivative conditions for super
minimizers). We can see that both the assumptions and the optimality conditions of the code-
rivative results in Sect. 3 and the subdifferential results in Sect. 4 are generally independent.
The relationships between them more or less revolve around the relationships between the
corresponding properties of graphs and epigraphs of set-valued mappings with values in
partially ordered spaces and between the generalized normals to these sets. At the same time,
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the subdifferential results of Sect. 4 tend to be improvements of the corresponding coderiva-
tive results of Sect. 3 under additional assumptions. By Proposition 4.3 this is definitely the
case for order semicontinuous cost mappings provided also that the ordering cone � has the
normality property imposed in Theorem 4.8.
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